Draper’s New Chip-based LiDAR Gives Cars Ability to ‘See’ Better
CAMBRIDGE, MA— LiDAR technology is at the center of the self-driving car world because it helps cars navigate by providing a real-time 3D map of the vehicle’s environment. The challenge for self-driving cars is that LiDAR technology is expensive—currently available LiDAR units can cost up to $80,000—making it among the most costly elements in a self-driving car. Other obstacles exist; for example, many current LiDAR approaches are constrained by a combination of their limited range, resolution and temperature sensitivity, and reliance on moving parts.
With a heritage in autonomous systems in unforgiving environments such as undersea and space applications, Draper understands that the ability of an autonomous vehicle to sense and perceive its environment is fundamental to successful travel. Leveraging its core strengths in MEMS development and integrated photonics, Draper has taken a different tack and is developing a solid-state, MEMS-based LiDAR. The concept enables integration of all LiDAR components, with the exception of the lens, onto a single chip.
According to Dr. Eric Balles, Director of Transport and Energy at Draper, the result is chip-scale LiDAR in a package designed for high-volume manufacturing by the automotive industry and others. “It’s LiDAR on a chip, and nothing like it exists today in the same form factor,” Balles said. “Draper’s goal is a high-resolution, large field-of-view LiDAR unit that fits the critical components onto a single chip and sells for less than $50.”
Draper’s solid-state MEMS-based LiDAR approach is being developed to image at a range of 300 meters while providing a corresponding angular resolution targeted at less than 0.1-degrees, a significant advancement over competing LiDAR systems, many of which offer lower range and resolution. Draper’s LiDAR would also be capable of scanning at a rate 20 frames of a scene every second.
Draper’s LiDAR approach is currently being matured in advance of being licensed and integrated into future customer products. The technology has the potential to impact the proliferation of LiDAR sensors in multiple industry sectors, including autonomous vehicles, aerial drones and potentially mobile phones, according to Chris Bessette, Self-driving Vehicle Program Manager at Draper. “LiDAR sensors that leverage this new design will be less expensive, easier to integrate due to their smaller size and more reliable as a result of no moving parts,” Bessette said.
Sabrina Mansur, Technical Director for Autonomous Vehicles at Draper, said “Draper’s innovations in optical systems, MEMS, sensors, microsystems and microfabrication builds on decades of experience in designing, developing and deploying autonomous platforms for space, air, ground, sea and undersea needs.” These systems range in complexity from human-in-the-loop to systems that operate without any human intervention. Draper continues to advance the field of autonomy through research in the areas of sensing and perception, mobility, learning, real-time performance evaluation and human trust in autonomous systems.